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The present work analyses the effects of variable porosity and inertial forces on 
convective flow and heat transfer in porous media. Specific attention is given to forced 
convection in packed beds in the vicinity of an impermeable boundary. After 
establishing the governing equations, a thorough investigation of the channelling 
effect and its influence on flow and heat transfer through variable-porosity media is 
presented. Based on some analytical considerations, a numerical scheme for the 
solution of the governing equations is proposed to investigate the variable-porosity 
effects on the velocity and temperature fields inside the porous medium. The method 
of matched asymptotic expansions is used to show the qualitative aspects of variable 
porosity in producing the channelling effect. These qualitative features are also 
confirmed by the numerical solution. The qualitative effects of the controlling 
parameters on flow and heat transfer in variable-porosity media are discussed a t  
length. The variable-porosity effects are shown to be significant for most cases. For 
the same conditions as the perturbation solution, the numerical results are in 
excellent agreement with the perturbation analysis. The numerical results are also 
in very good agreement with the available experimental data of previous studies. 

1. Introduction 
The importance of porous media in a variety of different applications such as 

petroleum reservoirs, building thermal insulation, chemical catalytic reactors, direct- 
contact heat exchangers, has led to  extensive investigat>ions in this area. This 
increased use of porous media requires a better understanding of the associated 
transport processes. However, owing to the geometric complexity of the porous 
medium some simplifications must be introduced. Most of the existing studies, such 
as those by Burns & Tien (1979) and Cheng & Minkowycz (1977), deal primarily with 
the mathematical simplification based on Darcy’s law, which neglects the effects of 
a solid boundary, inertial forces and variable porosity on flow through porous media. 
In  many applications, for example packed-bed catalytic reactors, the porous medium 
is bounded, the fluid velocity is high (i.e. high Reynolds number based on pore 
diameter) and the porosity is variable; therefore it is important to investigate these 
boundary, inertia and variable-porosity effects. The boundary and inertia effects on 
convective flow and heat transfer were analysed by Vafai & Tien (1981) for 
constant-porosity media and expressed in terms of several governing parameters. 
These allowed a simple characterization scheme for interpreting the applicability of 
Darcy’s law to various problems of flow and heat transfer in porous media. 
Furthermore, these effects were analysed and confirmed by an experiment (Vafai & 
Tien 1982) for transient mass transfer through constant-porosity media. In  some 
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applications, such as fixed-bed catalytic reactors, packed-bed heat exchangers, 
drying, chemical-reaction engineering and metal processing, the constant-porosity 
assumption does not hold because of the influence of an impermeable boundary. 
Therefore there is a need to focus on the variable-porosity effects on forced corivection 
in the vicinity of an impermeable boundary. The region close to an external boundary 
is of particular importance, since for most applications the quantities of interest, such 
as the heat flux at the boundary, are closely involved in that region. 

The variable porosity close to an impermeable boundary leads to a number of 
important effects such as flow maldistribution and channelling. Channelling, which 
refers to the occurrence of a maximum velocity in a region close to an external 
boundary, has been reported by a number of investigators such as Schwartz & Smith 
(1953) and Schertz & Bischoff (1969). Their velocity measurements in packed beds 
show a maximum close to the boundary. Furthermore, the measurements of Roblee 
et al. (1958) and Benenati & Brosilow (1962) show a distinct porosity variation in 
packed beds. Their results show a high-porosity region close to the external boundary. 
The porosity as a function of the distance from the boundary can be obtained from 
these measurements. Chandrasekhara & Vortmeyer (1979) used these measurements 
to solve numerically for the velocity profile in isothermal packed beds. However, their 
result was limited, and it was not based on a general formulation of the momentum 
equation. Moreover, they did not investigate the heat-transfer aspects of the 
variable-porosity medium. Flow maldistributions in packed beds have also been 
considered by a number of other investigators such as Stanek & Szekely (1972). 

Most of the heat-transfer investigations in packed beds, such as those of Hughmark 
(1976), Balakrishnan & Pei (1974), Denloye & Botterill (1977) and Schlunder (1978), 
are presented in terms of correlations based on Colburn-Chilton j-factors. These 
correlations express the heat transfer from the bulk of the packed bed; and the effects 
of the boundary and the variable porosity on the heat transfer are seldom, if ever, 
discussed. Furthermore, there is no detailed account of how the channelling effect is 
actually produced. The objective of this study is to present an in-depth investigation 
of the channelling effect and its influence on heat transfer and flow through 
variable-porosity media. First, the equations in Vafai & Tien (1981) are applied to 
a variable-porosity medium to derive the governing equations. Next i t  is shown that 
the velocity field is only a function of the coordinate that is normal to the boundary. 
The equations are then solved numerically to reveal the effects of variable porosity 
and inertial forces on forced convection. I n  addition, a singular perturbation analysis 
is used to explore the variable-porosity effects on the velocity field. The analysis 
reveals some interesting aspects of how the channelling effect is produced. Finally 
the qualitative effects of the controlling parameters on flow and heat transfer 
through variable-porosity media are demonstrated, thus enabling better predictions 
of heat-transfer rates in systems of this type. 

2. Analysis 
The governing equations for forced convection in porous media are developed here 

using the local volume-averaging technique. This is done by associating with every 
point in the porous medium a small volume V bounded by a closed surface A .  Let 
V, be that portion of V containing the fluid. The local volume average of a quantity 
@ associated with the fluid is then defined as in Whitaker (1969): 

1 
@dV. 

Vf 
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Using the spatial-averaging theorem, the local volume averages of the mass, 
momentum and energy equations for an  incompressible steady flow through a 
variable-porosity medium are established as in Vafai & Tien (1981). The resulting 
equations, which assume a locally isotropic medium, are 

V.( V) = 0,  (2) 

where 

ruf Pf FJ lufVz ( V) -- ( V) -- [( V)*( V)] J-V (P)f = 0,  
6 K K3 (3) 

p f  being the fluid viscosity, 6 the porosity, V the velocity vector, K the permeability, 
pf the fluid density, cf the fluid heat capacity, F a n  empirical function which depends 
primarily on the microstructure of the porous medium, T the temperature, J a unit 
vector oriented along the velocity vector, (P)f the intrinsic phase average of the 
pressure, and k, the effective thermal conductivity of the saturated porous medium. 
The concept of k, has been widely used and studied (Tien & Vafai 1979). The 
,uf ( V)/Kterm is the viscous force caused by the micropore structure. The development 
for momentum and the energy equations are quite different. I n  developing the 
momentum equation only the fluid phase is involved, while for the energy equation 
both the solid as well as the fluid phases have to be considered. The development 
of these equations is discussed in more detail in Vafai & Tien (1981). 

Boundary-layer formulation for variable-porosity media 
The effects of a solid boundary on flow and heat transfer in a porous medium originate 
from momentum diffusion caused by the boundary frictional resistance. This 
resistance is in addition to the bulk frictional drag induced by the solid matrix as 
characterized by Darcy’s law. The boundary effects are best described in terms of 
a new concept of a momentum boundary layer in which the above two resistances 
are of the same order of magnitude. This boundary-layer concept is important for 
the numerical solution of the governing equations. 

To illustrate the important effects of variable porosity and the momentum 
boundary layer on flow and heat transfer, an analysis is presented for incompressible 
two-dimensional flow through a variable-porosity medium confined by an external 
boundary (figure 1) .  It is assumed that the porous matrix properties are all functions 
of the coordinate y. This assumption is based on using line-average (transverse to the 
flow) values for the porous-matrix properties. This has been shown to be a good 
representation for a variable-porosity medium in several experimental studies such 
as Roblee et al. (1958) and Benenati & Brosilow (1962). Furthermore, this is exactly 
the type of averaging that is used throughout the analysis. Therefore all the variables 
as well as the porous-matrix properties are line averages in the transverse direction. 

Two important results are derived before obtaining the governing equations. These 
are u = function (y) and p = function (2 )  for boundary-layer flow through variable- 
porosity media. This is done by taking the curl of (3), invoking the boundary-layer 
approximations, and noting that 6 and K are functions of the normal coordinate y. 
This gives 
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Exaggerated boundary- 
layer thickness 

/- 
/ 

FIGURE 1. (a )  Flow through a variable-porosity medium confined by an external boundary. ( b )  
Typical velocity profile in the variable-porosity medium. 

where 

For flow over an external surface the boundary conditions that go with (6) are 

(u) = O  a t  y = O ,  

= O  as y-tm, a(u> 
a Y  

where U ,  is the free-stream velocity. It is now clear tLLat the solution of (6) subject 
to the boundary conditions given by (8) will result in 

(u) = function of y only. 

Furthermore, when there is no blowing a t  the surface, using the continuity and the 
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momentum equations it becomes apparent that  

( 2 ) )  = 0 (9) 

and (P)'  = function of x only. (10) 

Therefore these results eliminate any further consideration of the continuity equation 
or the y-momentum equation. Using the above results the governing two-dimensional 
boundary-layer equations for forced convection through variable-porosity media are 
fmnd to be 

It has been shown in Vafai & Tien (1981) that  the boundary-layer growth is significant 
only over a length of the order of 

Kd(P)f - I( ,u dx ) '  
This shows that the entrance length for almost all practical cases, and certainly for 
packed beds, is very small and negligible. 

3. Convection in packed beds 
The governing equations developed in $ 2  are general and are valid for forced 

convection in variable-porosity media. To analyse the convection in packed beds some 
constitutive equations have to be supplied for the geometric function F and the 
permeability K i n  the momentum equation. However, the energy equation needs no 
modification. These constitutive equations are obtained from the experimental 
results of Ergun (1952). After some algebraic manipulations the constitutive equations 
are found to be related to  the porosity and the particle diameter d, by the following 
equations : 

K =  63dg/150(1--6)2, (13) 

F = 1.75/(2/(150)8). (14) 

An order-of-magnitude analysis of the energy equation shows that the thermal 
boundary layer varies as xi .  From Vafai & Tien (1981) the momentum boundary-layer 
thickness is found to be of the order of y;l. These results are used to transform the 
momentum and energy equations to achieve a very efficient and accurate numerical 
scheme. The transformed equations are 

where 
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Here Re, is the Reynolds number based on particle diameter, T, is the boundary 
temperature, T, the free-stream temperature, and K,  and 6, are the free-stream 
permeability and porosity. The corresponding boundary conditions for (15) and (16) 
are 

(U) = 0 ,  (0) = O  a t  

where 
1 .75Se Re 

~e = 150(l-6ep) 

On examining the porosity variations near a wall (Benenati & Brosilow 1962) it 
becomes apparent that this variation is confined in a thin region close to the 
boundary. The wall heat flux, a convenient quantity for experimental measurements, 
is used to illustrate the effects of the porosity variation on heat transfer. The Nusselt 
number, which characterizes the wall heat flux, is expressed as : 

4. Singular perturbation analysis 
The physics of the channelling effect and its production are better understood in 

terms of this analysis. The momentum equation ( 1 1 )  i s  solved by the method of 
matched asymptotic expansions. Based on the analysis in Vafai & Tien (1981), the 
inner-solution independent variable is chosen as 

Y=@):; 

which turns out to be a very important choice, since several other alternatives were 
fruitless. I n  the perturbation solution i t  is assumed that H I  = H .  Physically this 
assumption corresponds to the case where the free-stream permeability is impressed 
on the bulk frictional drag term throughout the porous medium. Choosing y as the 
independent variable for the outer solution, the governing inner and outer equations 
are 

and 

The free-stream porosity 6, is chosen as the perturbation parameter. Then a 
perturbation expansion of the velocity is substituted in (27)  and (28). Since H2 and 
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Q are also functions of a,, they are expanded as well. The functional dependence of 
the porosity on the distance from the boundary can be found from a number of 
experimental results such as those of Roblee et al. (1958) and Benenati & Brosilow 
(1962). These results can be represented very well by an exponential function of the 
form 

6 = S,[ 1 + b exp( -31. 
This result neglects the small oscillations of the porosity, which are considered to 
be secondary. The emphasis here is on the decay of the porosity from the external 
surface, which has the primary effect. The empirical constants b and c are dependent 
on the ratio of the bed to particle diameter. However, the variations of b or c with 
respect to this ratio are small. For the perturbation solution to be valid, b must be 
less than 1. However, this turns out to be a very mild restriction, as for most 
applications b is less than one. Since the details of the analysis are extremely lengthy, 
only the final results are given. The inner perturbation results in the following 
equations : 

(u)  = uoi + Uliae + uzis: + UQi6g + uqi 64, + ugi 6: +ole), 
d2uoi 

B,uoi+B, = 0, uoi(0) = 0; (30) 
dy” 

-+ (B,Yu,~-B,u,~)-B~Y = 0,  uli(0) = 0 ;  (31) dy” 

dy” 

d? 

-- 

d2uli 

d2uZi 

d2u3i 

-- (B,y”-B,y)~oi+B,yuli-B,~,i+(B,y”-B~y) = 0, u2i(0) = 0 ;  (32) 

- + (B,  y - 2B4 y” + $B5 y”) u0i - (B, ij2 - B, y) uli 

+ B , ~ u , ~ - B , u ~ ~ - B , ~ + ~ B , ~ ” - $ B , ~ ”  = 0 ,  u3i(0) = 0 ;  (33) 

d2u,i 
~ + (B,  y- 3B4 y” + B5y3 -&B6 y4) u0i + (B ,  i j -  2B4y” + +B5 y”) uli 
dy” 

where 

I c1 = ~ 2/ 150 ’ 



240 K. Vafai 

and 
1.75a; 

“ = (150)2,uf v f  (37) 

After expanding the free-stream boundary condition, the outer perturbation results : 

(U), = Une + UleSe + u z e q  + U3es: + uges; + uses: + O(s6,); (38) 

(39) 

@-2u1, = 0, u,,(Co) = 0;  (40) 

@-2u ne - @-2 = 0, Une(OO) = 1 ; 

M 2 ( 3 e + 2 -  + 3 ___ - @-2u4, - $hl @u& = 0, Up,( 0) = - $bl ; 
d2U1e dY2 d2une) dY2 (43) 

-[2~,@u,,ule+~Cr,(4@-11)~~,1 = 0, ~ 5 e  ~ - 3 1 1 . ~ ;  (44) 

@ = [ l + b  exp(--py)12, p = -. (45) 
C d M = - - s _  

d l 5 0  ’ dP 
where 

In examining these equations it becomes clear that the effects of the inertial forces 
is introduced a t  the S: term and beyond. This effect is felt simultaneously in both 
the governing equations and the boundary conditions. Furthermore, it  is shown that 
these terms are necessary for the production of the so-called channelling effect. The 
solutions of these equations are 
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woe = 1, Ule = 0, u2e = 0, = 0, (52)  

~ 4 e  = - b exp ( --PY)]-~, (53)  

(54) wSe = -@r,{4[1+b e x p ( - p ~ ) ] - ~ - - [ l + b  e x p ( - p ~ ) ] - ~ j .  

The coefficients for these equations are given in the Appendix. On examining the 
governing equations for the outer perturbation i t  becomes clear that the outer 
boundary conditions are satisfied automatically. Moreover, comparing the inner 
and outer solutions it can be seen that, for the case where H ,  = H ,  the inertial forces 
are necessary for producing the constants Y,, and R16. These constants are in turn 
needed to produce the channelling effect. These constants and the changes in the 
free-stream boundary condition become important for terms involving 8% and higher 
powers. Finally, in matching the inner and outer solutions, yA[O( l)]  is chosen as the 
common variable. Expressing the inner and outer variables in terms of yA will result 
in 

Y = A Y A ,  (55) 

where 

so that  

- 4 A 4 1 ,  1 

Ye  

(57) 

The perturbation parameter Se must also be expressed in terms of ye. This is done 
by using (19), which results in 

where (59) 

After casting the inner and outer variables in terms of yd, then in the limit of 

A - t O ,  ye+w (60) 

both the inner and outer solutions approach the same limiting value given by 

Y,+m Y,+W 

Therefore the matching of the inner and the outer solutions is done automatically. 
This was expected, since there were no unknown coefficients in the inner and outer 
solutions. For the same conditions as the perturbation solution, the perturbation 
and the numerical results are in excellent agreement with the perturbation solution. 
The plots of these solutions are given in $5. 

5. Results and discussion 
I n  analysing the effects of variable porosity on forced convection, (15) and (16) 

should be solved numerically. All of the coefficients in (15) and (16) are functions 
of 5 and 7.  This is because Q ,  H and S are functions of the porosity and the 
permeability, which are in turn functions of 6 and y. The functional relation between 
the permeability and porosity is given in (13). 
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Figures 

2-5 
6 8  
6 8  
6 8  
9-1 1 
s 1 1  
s 1 1  

12-14 
12-14 
12-14 
15-17 
15-17 
15-17 
15-17 
18 
18 
18 
18 
18-19 

Fluid 

water 
water 
water 
water 
water 
water 
water 
water 
water 
water 
water 
water 
water 
water 

engine oil 
engine oil 
engine oil 
engine oil 
engine oil 

Pressure 
gradient 
(N m-3) 

1493 
746 

1493 
2985 
1493 
1493 
1493 
1493 
1493 
1493 
1493 
1493 
1493 
1493 
1493 

1.2 x 105 
9.9 x 105 
1.2 x 107 
1.2 x 105 

U C  

(m s-') 

0.325 
0.162 
0.325 
0.65 
0.0812 
0.325 
1.30 
0.116 
0.196 
0.325 
0.325 
0.325 
0.325 
0.325 
0.0003 
0.0266 
0.213 
2.66 
0.0266 

d* 
(m) 

0.008 
0.008 
0.008 
0.008 
0.004 
0.008 
0.016 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 

8, b e 

0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.4 0.98 2 
0.45 0.98 2 
0.5 0.98 2 
0.5 0.6 2 
0.5 0.98 1 
0.5 0.98 2 
0.5 0.98 5 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 
0.5 0.98 2 

Re, 
2645 
1322 
2645 
5290 
33 1 

2645 
21 160 

940 
1593 
2645 
2645 
2645 
2645 
2645 

0.0023 
0.189 
1.51 
18.9 
0.189 

Condition 

L 
M 
H 
L 
M 
H 
L 
M 
H 

L;b 
L;c  
M;c 
H ; c  

L 
Mi 
M2 
H 

M1 

- 

TABLE 1 .  Physical data for figures 2-19. L,  M and H are respectively assigned to the lowest, the 
middle and the highest values of the physical parameter under consideration. 

The numerical scheme is based on finite-difference versions of (15) and (16), 
supplied with the boundary conditions given in (22) and (23). The upstream condition 
for the energy equation is taken as uniform temperature T, a t  x = 0. The finite- 
difference scheme was based on using upwind differencing in the (-direction, and an 
implicit routine in the 7-direction, along with the linearization of t h e  momentum 
equation. The resulting set of algebraic equations was solved by tridiagonalizing the 
solution matrix. The linearization scheme used for (15) was checked by increasing 
the number of iterations used for convergence. The numerical scheme resulted in a 
very efficient and stable system. The accuracy of the finite-difference solution was 
tested by increasing the number of gridpoints, and investigating some limiting cases. 

I n  obtaining the numerical results the following input parameters were used : the 
driving pressure force, the particle diameter d,, the free-stream porosity 6,, the 
empirical constants b and c in (29), and the thermophysical properties of the fluid 
and the solid matrix. The free-stream permeability and the effective thermal 
conductivity were calculated from these input data. The free-stream permeability was 
found from (13). This equation was checked against the semiempirical formulation 
recommended in Dewiest (1969), which also relates the permeability to porosity and 
the particle diameter. The agreement was found to be good. The effective thermal 
conductivity was found in terms of a statistical upper and lower bound given in Tien 
& Vafai (1979) as 

Here k,  and k, are the solid and fluid thermal conductivities, R is the ratio of the 
thermal conductivities such that R > 1, and G is a geometric factor, which is for 
spherical particles. It turns out that  l( and F, are close when R is of the order of 1. 
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FIGURE 3. Comparison of the actual temperature distribution with the temperature distribution 
based on Darcy’s and the modified Darcy’s law. 
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Therefore the effective thermal conductivity is taken as 

k, = i[F,(J, R, G) +&(a, R, G)] (k, kf)$. 

56 

(63) 

Presented in figures 2 4  are the numerical results for the velocity and temperature 
profiles for flow of water through a packed bed. The velocity and temperature profiles 
in figures 2-14 are presented a t  = 0.3. The essential physical information for figures 
2-19 is given in table 1. Figure 3 compares the theoretical temperature distribution 
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FIGURE 5. The porosity variation used in figures 2-4 (presented at 6 = 0.3). 

that accounts for all of the effects, with the temperature distribution based on Darcy’s 
law, and also the modified Darcy’s law (Forchheimer equation). The Nusselt numbers 
corresponding to the three cases in figure 3 are shown in figure 4. From figure 4 it  is 
evident that the Nusselt number that  accounts for all of the effects lies between the 
Nusselt number based on Darcy’s law and the modified Darcy’s law. This behaviour 
prevailed for most cases for which the effective Prandtl number Pr, = v / a ,  was of 
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--- Modified Darcy’s law - 
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FIQURE 7 .  Pressure-gradient effects on the temperature distribution (see table 1). 

order 1 .  Therefore it seems plausible to conclude that using Darcy’s and the modified 
Darcy’s law is a good estimate for the lower and upper bounds of the theoretical 
Nusselt number, as long as Pr, is of order 1 .  This subject is discussed in more detail 
later on. The porosity variation used in figures 2 4  is shown in figure 5 for 5 = 0.3. 

Figures 6-8 show the effects of the pressure gradient on the velocity and 
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FIQURE 8. Pressure-gradient effects on the Nusselt-number variation (see table 1 )  
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FIQURE 9. The influence of different particle sizes on the channelling of 
the velocity profile (see table 1). 
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7) 

FIQURE 10. Particle-size influence on the temperature distribution for flow 
through a variable-porsity medium. 

temperature distributions. As expected, a higher pressure gradient causes a higher 
peak velocity. However, it should be noted that the velocities are presented in 
dimensionless form. To obtain the actual velocity, (U) should be multiplied by the 
convective velocity u,. The higher velocities lead to an increase in the convected 
energy compared with that by conduction, causing a thinner thermal boundary layer 
for the case that has a higher pressure gradient. This thinner boundary layer creates 
a larger flux at the boundary leading to the largest values of Nusselt number for the 
highest pressure gradient. These results are shown in figures 7 and 8. The effects of 
different particle sizes are shown in figures %l 1. A larger particle size causes a larger 
permeability, which in turn leads to larger velocities. Therefore smaller particles cause 
a thicker thermal boundary layer, leading to smaller Nusselt numbers. This is indeed 
the case, as seen in figures 9-11. The variations in free-stream porosity have a 
significant effect on the flow field as well as the heat fluxes. These effects are shown 
in figures 12-14. The larger the free-stream porosity, the smaller the overall frictional 
damping resistance offered by the porous matrix. This in turn leads to higher 
velocities for the larger free-stream-porosity case (figure 12). Steeper temperature 
gradients and larger Nusselt numbers are then created as a result of these higher 
velocities, as shown in figures 13 and 14. Different values for the constants b and c 
in (29) generate different porosity variations from the wall. Increasing b causes a 
higher porosity at  the boundary, and increasing c causes the porosity to reach its 
free-stream value within a shorter distance from the wall. Figure 15 shows that for 
a larger value of b a larger peak velocity is obtained, irrespective of the variations 
in c .  This causes lower Nusselt numbers for the smaller value of b. From the same 
figure it can be seen that, for a fixed value of b, decreasing c causes an increase in 
the peak velocity. This has a direct effect on the temperature field and the Nusselt 
numbers. At a fixed value of 6 ,  decreasing c creates steeper temperature gradients 
and larger Nusselt numbers, as seen in figures 16 and 17. 
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FIQIJRE 11. The Nusselt-number variation corresponding to particle sizes 
dp = 0.004 m, 0.008 m and 0.016 m. 
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FIGURE 13. Free-stream porosity effects on the temperature field 
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The fluid used in all of the above cases was water. To illustrate the significance 
of different thermophysical properties, the flow of an engine oil though a packed bed 
is considered next. Aside from the thermophysical properties, all other system 
parameters are kept the same as those presented in figures 2-5. Figure 18 presents 
the velocity profiles for different values of the pressure gradient. Higher pressure 
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FIGURE 16. Temperature distributions for different porosity variations. 

gradients translate into higher values of Re,, which in turn cause higher values of 
Q(y), as seen in (20). The results for the temperature distribution, for Re, = 0.189, 
are shown in figure 19(a). The Nusselt numbers for the case that accounts for all of 
the inertial forces, variable porosity and the boundary effects, for Re, = 0.189, is 
presented in figure 19 (b). Also presented in this figure are the Nusselt numbers based 
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on Darcy’s law and the modified Darcy’s law. It is seen that for small values of Re, 
the inertial effects are negligible and there is almost no difference between the Nusselt 
number Nu, based on Darcy’s law, and the Nusselt number Nu,, based on the 
modified Darcy’s law. However, the difference between the two Nusselt numbers 
increases as Re, is increased. In general, the Nusselt number based on the modified 
Darcy’s law is less than Nu,. This is expected, since the modified Darcy’s law provides 
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a lower velocity, which causes less energy to be carried away from the boundary, thus 
causing a lower Nusselt number. Furthermore, the Nusselt number Nu that  accounts 
for all the effects is usually greater than Nu,,. The parameters that affect the ratio 
NulNu,, are the Prandtl number and the relative magnitude of the peak velocity 
compared with the Darcy’s velocity. For example, for fluids that have an effective 
Prandtl number of order unity, Nu often lies between the Nusselt number N U ,  based 
on Darcy’s law, and that Nu,, based on the modified Darcy’s law. The reason is 
that  for Pr, = O( 1 )  the momentum boundary layer is of the same order of magnitude 
as the thermal boundary layer. Therefore, owing to the channelling, the effective 
convective velocity is greater than the modified Darcy’s velocity. This causes more 
energy to be carried away from the boundary, thus causing Nu to be greater than 
NUMD. 

I n  the absence of data concentrating on the effects of variable porosity on the heat 
transfer, the theoretical velocity profile is compared with available experimental 

9 2  
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FIQURE 21. Comparison of the numerical and the perturbation solutions for 
(a) 8, = 0.3, Re, = 31; ( b )  8, = 0.35, Re, = 51. 
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FIGURE 22. Comparison of the numerical and the perturbation solutions for 
(a) 8, = 0.4, Re, = 89; ( b )  8, = 0.45, Re, = 60. 
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data. The comparison is made with the experiments of Schertz & Bischoff (1969). 
Their experimental set-up included a cylindrical packed bed consisting of stoneware 
spheres with a diameter of 0.7747 em. The fluid used in this experiment was air. For 
this particle diameter and the ratio of bed to particle diameter (13.11) corresponding 
to their experiment the porosity variation is given by the experiments of Benenati 
& Brosilow (1962). Using this porosity variation, the theoretical velocity distribution 
is computed for the same conditions as the experimental data, and is shown in figures 
20 for four different runs. The theoretical results were also checked against the 
experimental results of Schwartz & Smith, and the same kind of agreement was found. 
As can be seen in figure 20, the agreement between the theory and experimental data 
is very good. The discrepancies are attributed to the geometry and the small 
oscillations in porosity, since the oscillations were neglected and a cylindrical 
geometry was used in the experiments. The numerical results were obtained for a 
Cartesian system. 

In  the perturbation solution the inertial forces that are responsible for the 
channelling effect, for the case where H ,  = H ,  do not appear until the fourth 
perturbation term. Owing to the packing configuration there is also a physical lower 
bound for the free-stream porosity 8,. Therefore there will be a need to carry more 
terms beyond 8: for greater accuracy at larger values for 6,. The shape of the velocity 
profile as well as the magnitude of the peak velocity and their relation with the 
porosity variation, the free-stream porosity, the particle diameter and the driving 
pressure difference becomes very clear after examining the inner and outer solutions 
given in (46)-(54). For example, the magnitude of the peak velocity and its relation 
with the porosity variation can be seen by examining the coefficients Y12, R,, and 
the outer solutions ule and u5,. 

Perturbation solutions for 8, = 0.3 and S, = 0.35 are presented in figure 21 along 
with the numerical solutions. The numerical results are presented for the same 
conditions as the perturbation solutions. In  this figure uIII, uIv and uv refer to the 
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perturbation solutions that consist respectively of all the terms up to and including 
the third, the fourth and the fifth. The uIII solution contains only the information 
on the boundary effects. For this reason there is nothing to indicate the formation 
of a peak velocity. On the other hand, the uIv and uv solutions clearly indicate the 
formation of a peak velocity. Furthermore, the uv solution shows a better peak 
formation than the uIv solution. In the numerical solution the free-stream conditions 
were set a t  the same distance as the perturbation solution. Figure 22 presents the 
perturbation and the numerical solutions for S, = 0.40 and S, = 0.45. It can be seen 
that there is an excellent agreement between the perturbation solution and numerical 
results, which are presented for the same conditions as the perturbation solution. For 
valures of 6, below 0.25 there is very little difference between the uv solution and 
the numerical solution. Figure 23 compares the perturbation and the numerical 
solutions for 6, = 0.2. 

6. Conclusions 
The purpose of the present study is to show the nature and importance of the 

channelling effect and its influence on flow and heat transfer through variable- 
porosity media. This is accomplished by first analysing the general problem, and then 
applying the formulation to the case of convection in packed beds. The unique 
dependency of the velocity field on the normal coordinate is established. The 
qualitative features of the channelling and its production are investigated in depth 
by the method of matched asymptotic expansions and the numerical solution of the 
governing equations. The qualitative effects of various controlling parameters on flow 
and heat transfer are thoroughly investigated and are presented in $5. The variable- 
porosity effects are shown to be important and significant for most cases. For 
calculating the heat flux a t  the boundary, for some cases, Darcy’s law provides a 
better approximation for accounting the variable-porosity effects than the modified 
Darcy’s law. The numerical results are in excellent agreement with the available 
experimental data. 

Appendix. Perturbation coefficients 
The coefficients for (46)-(51) are as follows: 

20X2 -a1 B, -$B5 + B,a, + B,Z3 12X3 + 2B, + B3Z4 + B3al 

6@ 
x, = > x, = 

8@ 
> 

‘B +B,X3+B,Z1-B4Z,+42Y, 
y3=3 4 

y 4 =  

la > 

3OY, + &B6 - 2B4 a, + $B5 a1 + B, Z 2  - B, Z 3  + B3 X ,  
lo&:, 
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20Y, - B, + B, 01, - 2B,a, + B,Z, - B, 2, + B,X, 
y 5 =  

8@ 
, 

12Y, + 3B, + B3al + B, 2, + B, X ,  6y6-B3 y7 +B, y 6 =  > y 7 = 7 - ,  K = - p  
6 4  4 %  
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